Математика
Матема́тика (грец. μάθημα — наука, знання, вивчення) — наука, яка первісно виникла як один з напрямків пошуку істини (угрецькій філософії) у сфері просторових відношень (землеміряння — геометрії) і обчислень (арифметики), для практичних потреб людини рахувати, обчислювати, вимірювати, досліджувати форми та рух фізичних тіл. Пізніше розвинулась у досить складну і багатогранну науку про абстрактні кількісні та якісні співвідношення, форми і структури. Загальноприйнятого визначення математики немає. Початково вона використовувалася для підрахунку, вимірювання, а також для вивчення форм і руху фізичних об'єктів шляхом дедуктивних розмірковувань та абстракцій. Математики формулюють нові висновки і намагаються встановити їх справедливість, виходячи зі вдало вибраних аксіом і визначень.
- Математика — наука про кількісні співвідношення і просторові форми дійсного світу (Фрідріх Енгельс)
Походження слова і його вживання в різних мовах
Слово «математика» походить від грецького слова μάθημα, що означає «наука, знання, вивчення», і грецького μαθηματικός, що означає «любов до пізнання», в підсумку приводить до більш вузького і технічного (прикладного) значення «математичне дослідження», яке використовувалося і в античні (класичні) часи. Зокрема, грецькеμαθηματική τέχνη, латиною ars mathematica, означає математичне мистецтво.
Історія математики
Математика виникла з давніх-давен з практичних потреб людини, її зміст і характер з часом змінювались. Від початкового предметного уявлення про ціле додатне число, від уявлення про відрізок прямої, як найкоротшу відстань між двома точками. Математика пройшла довгий шлях розвитку, перш ніж стала абстрактною наукою з точно сформованими вихідними поняттями і специфічними методами дослідження. Нові вимоги практики, розширюють обсяг понять математики, наповнюють новим змістом старі поняття.
Поняття математики абстраговані від якісних особливостей специфічних для кожного даного кола явищ і предметів. Ця обставина дуже важлива у застосуванні математики. Так, число 2 не має якогось певного предметного змісту. Воно може відноситися і до двохкниг, і до двох верстатів, і до двох ідей. Воно добре застосовується і до цих і до багатьох інших об'єктів. Так само геометричнівластивості кулі не змінюються від того, зроблено її зі сталі, міді чи скла. Звичайно, абстрагування від властивостей предмету збіднює наші знання про цей предмет і його характерні матеріальні особливості. В той же час саме це абстрагування надає математичним поняттям узагальненості, даючи можливість застосовувати математику до найрізноманітніших за природою явищ. Це означає, що одні й ті ж закономірності математики, один і той же математичний апарат можуть бути достатньо успішно застосовані до біологічних, технічних, економічних та інших процесів.
Розвиток математики опирається на писемність і вміння записувати числа. Напевно, стародавні люди спочатку висловлювали кількість шляхом малювання рисок на землі або видряпували їх на деревині. Стародавні інки, не маючи іншої системи писемності, представляли і зберігали числові дані, використовуючи складну систему мотузяних вузлів, так звані кіпу. Існувало безліч різнихсистем числення. Перші відомі записи чисел були знайдені в папірусі Рінда, створеному єгиптянами Середнього царства. Індська цивілізація розробила сучасну десяткову систему числення, що включає концепцію нуля.
Абстрагування в математиці не є її винятковою особливістю, оскільки всілякі загальні поняття містять в собі деякий елемент абстрагування від властивостей конкретних речей. Але в математиці цей процес йде далі, ніж у природничих науках. У ній широко використовують процес абстрагування різних ступенів. Наприклад, поняття групи виникло внаслідок абстрагування від деяких властивостей чисел та інших уже абстрактних понять. У математиці специфічним є також метод одержання результатів. Якщо природознавець, доводячи будь-яке твердження, завжди використовує дослід, то математик доводить свої результати лише на основі логічних міркувань. Жодний результат у математиці не можна вважати доведеним, поки йому не дано логічногообґрунтування, хоч спеціальні досліди і підтвердили його. В той же час істинність математичних теорій перевіряється на практиці, але ця перевірка має особливий характер. Висуваються математичні теорії реальних явищ, а висновки з цих теорій перевіряються на досліді. Однак зв'язки математики з практикою є ширшими, бо поняття математики: теореми, задачі, математичні теорії пов'язані із запитами практики. З часом ці зв'язки стають глибшими і різноманітнішими. Математику можна застосувати до вивчення будь-якого типу руху. Проте в дійсності її роль в різних галузях наукової і практичної діяльності неоднакова. Особливо великою є роль математики у вивченні тих явищ, для яких навіть значне абстрагування від їхніх специфічних якісних характеристик не змінює істотно притаманних цим явищам кількісних і просторових закономірностей. Наприклад, у небесній механіці тіла вважають матеріальними точками (тобто абстрагуються від реальності); обчислені таким способом рухи небесних тіл збігаються з дійсними рухами цих тіл. Користуючись математичним апаратом, можна не тільки дуже точно передобчислювати небесні явища (затемнення, положення планет тощо), але й за відхиленням істинних рухів від обчислених зробити висновок про наявність невидимих неозброєним оком небесних тіл. Саме так було відкрито планети Нептун (1846) іПлутон (1930). У зв'язку з бурхливим розвитком космічних польотів небесна механіка набула все більшого значення. Механіка і фізика стали, по суті, математичними науками. Менше, але все ж значне місце посідає математика в економіці, біології, медицині, лінгвістиці. Для цих наук особливого значення набула математична статистика. Якісна своєрідність явищ, що вивчаються, наприклад, у біології, настільки значна, що роль математичного аналізу при дослідженні їх поки що є підпорядкованою. Процес математизації наук, що почався з 18 ст., тепер набув винятково інтенсивного розвитку.
Історію математики вчені зазвичай поділяють на чотири періоди:
З 17 століття розвиток математики істотною мірою взаємокоординується з розвитком фізики, механіки, низки технічних дисциплін, зокрема гірництва. Математика широко застосовується, наприклад, для складання та опрацювання математичних моделей технологічних процесів.
Цілі і методи
Математика вивчає уявні, ідеальні об'єкти та співвідношення між ними, використовуючи формальну мову. Однак усі досліджувані математикою об'єкти мають прообрази в реальному світі, більш-менш схожі на свої математичні моделі. Модель об'єкта враховує не всі його риси, а тільки найпотрібніші для мети дослідження. Наприклад, вивчаючи фізичні властивості апельсина, ми можемо абстрагуватися від його кольору та смаку і подати його (нехай не ідеально точно) у вигляді кулі. Якщо ж нам потрібно зрозуміти, скільки апельсинів ми отримаємо, якщо складемо докупи два і три, — то можна абстрагуватися і від форми, залишивши в моделі тільки одну характеристику —кількість. Абстракція та встановлення зв'язків між об'єктами в найзагальнішому вигляді — це є ціль математики.
Вивчення об'єктів у математиці відбувається за допомогою аксіоматичного методу: спочатку для досліджуваних об'єктів формулюється список аксіом і вводяться необхідні означення, а потім з аксіом за допомогою логічних правил виведення одержують цінні теореми.